CRITICAL PARAMETERS OF SHOCK WAVES
IN A PLASMA

Yu. A. Berezin and V. A, Vshivkov UDC 533.6.011.72

The critical parameters at which an isomagnetic compression shock occurs are determined
using a regular method based on an analysis of the type of singular points of the equations

for the structure of standing shock waves propagating at an arbitrary angle to the undisturbed
magnetic field in a plasma with finite conductivity and thermal conductivity.

The question of the existence and structure of shock waves in a plasma containing a magnetic field has
been studied intensively by many authors [1-10]. In [1] the Hugoniot equations are generalized to the case of
magnetogasdynamics and in [2-7] a study is made of these equations, as a result of which shock waves are
divided into slow (Mg < M % 1), intermediate (1 £ M < Myg), and fast (M 2 Mg), where M is the velocity of the
shock wave with respect to the Alfven velocity, i.e., the Alfven—Mach number; Mg is the slow magnetosonic
velocity; Mg is the fast magnetosonic velocity. The theory of shock waves in a rarefied plasma was founded
by Sagdeev [8]; he demonstrated the possibility of the existence of such waves and stressed the important role
of dispersion effects, which lead to the formation of shock waves having an oscillatory structure. A detailed
study of steady and nonsteady compression waves in a two-fluid plasma with allowance for dispersion effects
is given in [9], but energy dissipation and thermal conduction are absent there and it is assumed that v = 2.
The nature of the singular points of the equations describing the structure of a shock wave propagating across
a magnetic field is studied in [10] and the critical parameters at which a transition occurs from continuous
solutions with respect to all the functions to discontinuous solutions with respect to the gasdynamic functions
are established from this analysis. In [11] the different structures of shock waves transverse to the magnetic
field are analyzed with allowance for the finite conductivity, dispersion, and electron thermal conductivity,
numerical solutions are obtained for the nonlinear equations of the structure in the region of parameters
when the flow is continuous, and the critical parameters at which the solution changes from an oscillatory to
a monotonic or discontintous solution are found. A rather detailed study of the isomagnetic compression
shock is made in {12] using the numerical solution of the nonsteady problem of the propagation of shock waves
in a plasma across a magnetic field (the program for the numerical solution was developed and tested on a
large number of such nonsteady problems by Berezin; see [13], for example). Within the framework of this
program an attempt was made in [14] fo determine the critical parameters of shock waves propagating at an
arbitrary angle to the undisturbed magnetic field in the absence of thermal conduction. However, because of
the complex nature of the dependence of the width of the shock wave on the Mach number, which will be de-
scribed in detail below, the critical Mach numbers obtained in [14] must be considered as very approximate.
A table of values of the critical Mach numbers for a number of angles is given in [15] without an indication of
the method of solution.

1. Initial Equations

The system of equations describing the one-dimensional motion of a two-fluid quasineutral plasma at an
arbitrary angle to an undisturbed magnetic field with allowance for dispersion, finite conductivity, and elec-
tron thermal conductivity, has the following form in dimensionless variables:
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P = nTe, U = (mjlij * mele)/(mj + mg) ={u, v, w}, H={sin6, H, B}. The direction of wave propagation coin-
cides with the x axis and the undisturbed magnetic field lies in the plane x, z. We take the quantities
5= c |/ _ H, H%

n = -—.
o ]/4Jlnoe ’ V4nnomi 10 8w

as the scales of density, length, velocity, magnetic field, and pressure. In addition, we introduce the following
notation: ® = megcy/eH, is the dimensionless effective collision frequency; 8 = mg/mj; 8 is the angle between
the plane of the wave front and the propagatmn direction; x = [p/(H? + B? + sin?6)1- [((sin®8+ x;;)/ %) + (((H2 + B?)
nyx, )/(H2+ B? +sin?0))1H? + B? + sin6) is the dimensionless coefficient of thermal conductivity (the coefficients
along and across the magnetic field are designated by the subscripts | and 1), The conductivity of the plasma
in dimensionless variable was introduced through the equation o = ne?/mgv.

2. Equations of Shock-Wave Structure

Let us change to a coordinate system moving with the constant velocity M of the shock wave in the
direction of negative values of the coordinate x. Then from (1.1) we obtain the following system of steady-
state equations and algebraic relations (conservation laws):

ru=M, 2Mu -+ p+ H*+ B =
My = Hsin 9, Mw = (B — cos B) sin 9,

(2.1)
ﬁMde(':z‘%) MH — 32 — (igﬂ'—nv)sinﬁ,
fM dz(i‘?) MB — (nw-—%—?)sinﬂ——z%—Mncose,
x5 ‘—IslMu % = #‘{((2% — %) H 4 Bsin 9)%’1 +
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where
C, = 2M? + p, + co0s%0; C, = 0. 5M(‘yp0/(y — 1) + M2 4 2 cos®0).

Equations (2.2) for the magnetic field components H and B and the longitudinal macroscopic velocity of the
plasma together with the conservation laws (2.1) describe the structure of a standing shock wave with allow-
ance for the inertia of the electrons (terms proportional to g), the finite conductivity, the anisotropy of the
plasma, and electron thermal conductivity.

3. Steady States

We introduce the subscripts 0 and 1 to mark the functions corresponding to the steady states of the
plasma in front of the wave (undisturbed state) and behind the wave (disturbed state), and from the system
(2.1), (2.2) we obtain the following relation between these functions:
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niuy =M, p;+ 2Mu, -+ B = p, -+ 2M? -+ cos™,
Mw, = (B, — cos 8)sin 6, n, (Mcos 0 4- w,sin 8) = MB,,
2 2,2
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It is known that the functions behind the shock wave are single-valued if the den51ty ny behind the wave is
taken as the independent variable. Therefore, expressing all the functions behind the wave through n; and
the Mach number M, we obtain the following expression;

. M2 . —
B; = (M?— sin%6)cos 8~ (TL}' — sin? 6), uy= Mny ",

1 ¢ 1) M2 — 2n, sin? @
Py= Py + 2ME (ny — 1) [;1- - ‘"1;(1&2 g oos? e].

The Mach number of the shock wave is connected with the plasma density n; behind the wave by the equation

2—y)mt 7y .
If the new functions
y = M?¥ sin®, 2z = yin;
are introduced, then from (3.1) we obtain
(v +1)(z—1)?sin?6 — (yz —y— 1) cos? 0] z — v (z —1)% p, (3.2)
y= TN (s —1Fsint 0L [{2— )z F ¥ — 1] cost®

By assigning different values of z one can find the values of y and then all the unknown functions
M? = ysin®8, n, = y/z,
B; = |(y — 1)/(z — 1)] cos 8,
P1= Po + 20y — {1 —I(y + 2 — 2)/2(z — 1)*] c1g?6} sin6.
For the case of v = 5/3 we have from (3.2)

[8(z—1)?sin? @ — (52 — 8) cos2 B} 53— 5 (z — 1)2p0
y= 2z 1P sinE 0 (z - 2) cost 0

Everywhere below we will consider states of the plasma in front of the wave with p; « 1, and therefore
the subject will only be fast shock waves with M > 1.

4. Study of Singular Points

The steady states 0 and 1 considered above correspond to singular points of the system (2.2), and the
nature of the solution of the shock-wave problem depends on the type of these singular points. Taking u =
U, *u',B =By, * B', and H= H', where u; =M, By = cos §, ' < upy, and B' < By ,i» We perform a linear-
ization of the system (2.2) near the singular points 0 and 1. The allowance for dxspersmn does not affect the
values of the critical parameters and therefore we will take g = 0; thus, we obtain from (2.2) the following
linear system of equations (the primes are omitted):

cdH/dz = way oH — ay95in8.B — by g sin 01, (4¢.1)

cdB/dz = ay,q sin 0-H - % a3 0B + %byou,

frodu/de = g1 oH + 1y 0B + q1,0u,
where
agg =M1 — ny o sin®0/M?); ¢ = »* + sin%;
B, 45— 1]
bio= n?}o (cos 0+ ﬂﬁ;fi sin? 9);
fr0 = Ups,o — 2Mu1 )My 05 810 = (2u4,0B1 02,0 sin 0)/Medyy o3
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As usual, we will seek a solution of (4.1) inthe form of functions proportional to exp (kx), as a result of which
we obtain the characteristic equation

szx,»oks —c (2a1,071,0% + cgu,0) k* + [ (xaf ofs,0 + 201,0€45,0 —
— byy0er1,0) + (B1,0681,0 + 0 of 1,0 8in 8) 5in 0] & — a1,0¢ (81,091,0 — ba,071,0) = 0. 4.3

Let us consider the case of y = 5/3 and assume that the thermal conduction can be neglected (x = 0). Then
Eg. (4.3) becomes a quadratic equation:

cqi,0k? — %(2ay 0950 — by,0r1,0)k + ay,0(ay,0q1,0 — b1,071,0) = 0 4.4)
with the coefficients
10 = — B10[(3/2 — ny,0 sin®0/M?)u, ¢ + sin*0/M],

5 2 3 B, 40
91,0 =7 P10+ Bro— Muy,o (7 -+ —1301-513),

where @,p by g, and c are the same as in (4.2).

In the undisturbed state
g = M('l — Sln20/M2) > Q, bo = c.og 0>0,
ry = —(3/2)M cos 6 < 0, g, = — (3/2)M* < 0.

Therefore, the Routh sequence (see [16], for example)
{6901*‘ %®(2a4q0 — bgTo), ao{ayge — ber o)}

for Eq. (4.4) at the undisturbed point 0 has the signs {—, +, -—} for any parameters. According to the Routh
criterion, these two sign changes correspond to two roots having a positive real part, and the integral curve
of the system (2.2) can always go to the point 0 (remember that the undisturbed state of the plasma is taken
at x < 0).

In the undisturbed state
a, = M(1 — r, sin?0/M?) > 0,
by = nf {cos 8 - [(B, — cos 8)/M?] sin® 0}> 0,
r, = — (3/2)Bju; < 0,

g1 = (5/4) py -+ Bf — Mu, (3/2 + B,by/M?)

and the number of sign changes in the Routh sequence depends on the sign of the quantity q. If g; > 0, then
we have {+, —, +}, which corresponds to two roots having a positive real part at the singular point 1, and the
integral curve cannot emerge from the point 1 (remember that the disturbed state of the plasma is taken at
x> 0). If g4 <0, then we have {-, -, *}, which corresponds to the presence of one negative root, and the in-
tegral curve can emerge from the point 1. Thus, the transition from continuous solutions to discontinuous
solutions is accomplished with parameters such that ¢ = 0. These critical parameters are presented in
Table 1.

When thermal conduction is taken into account it is necessary to study the number of sign changes in the
Routh sequence ’ : '

(4, B, C — AD/B, D}

for Eq. (4.3), where A, B, C, and D are the coefficients of Eq. (4.3) in the order of decrease in the power of
k. At the singular point 0 we have {—, +, —, * }, these three sign changes correspond to three roots having a
positive real part, and the integral curve can always go to the point 0. At the singular point 1, as the analysis
shows, the Routh sequence has the signs {—, —, +, =} for Mach numbers less than some value M, (6) and
{+,—, *,—} for M> M,(6), i.e., in the first case the integral curve can emerge from the point 1, since there
is one negative root of the characteristic equation (4.3), while in the second case it ‘cannot, since Eq. (4.3)
does not have a single root with a negative real part. This transition can occur when the coefficient f; is re-
duced to zero. The critical parameters obtained in this way in the presence of thermal conduction are pre-
sented in Table 2. The allowance for thermal conduction leads to an increase in the critical Mach number for
all angles 6, with this difference decreasing with an increase in the angle 9. It is interesting to note that, as
in the case of shock waves propagating across a magnetic field and analyzed in [10-12], for oblique waves
with the critical parameters we have p; = 2My or (in dimensional variables) w = (Ty / mi)’/Z, i.e., the longi-
tudinal velocity of the plasma behind the wave (in the coordinate system connected with the wave) equals the
ionic sound velocity behind the wave.
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TABLE 1

6° 0 10 20 30 40 50 60 70 80

M 2,76 2,741 2,677 2,375 2,439 2,277 2,097 1,907 1,746 1,530
2,66 2,661 2.654 2,641 2,623 2,598 2,538 2,506 2,435 2,342
B, 2,66 2,638 2,564 2,445 2,286 2,096 1,882 1,637 1,432 1,217
pp 3,42 3,388 3,241 3.011 2,722 2,397 2,060 1,740 1,451 1,20
T, 1,28 1,273 1,221 1,140 1,038 0,923 0,808 0,606 0,598 0,512

TABLE 2

it 50 60 70 80 90

9° 0 ! 10 20

M 3,464 3,431 3,334 3.477 2,970 2,724 2,454 2,473 1,904 1,652
ny 3,00 2,999 2,994 2,986 2,974 2,954 2,926 2,884 2,821 2,732
B, 3,00 2,968 2,875 2,723 2,523 2,282 2,015 1,737 1,463 1,209
I 8,00 7,832 7,423 8,739 5,933 5,024 4,116 3,282 2,570 2,00
T, 2,667 2,618 2,479 2,263 1,995 1,700 1,407 1,138 0,911 0,732

5. Engaged Shock Waves

Shock waves which propagate along the undisturbed magnetic field (6 = 90°), which are called engaged
shock waves, will be considered separately. In this case from the system (3.1) we have
ny o= M2, uy = M—t, - (5.1)
P1=Dpy+2(M*—1)—Bi,
[YPo/(y — 1) -+ M M = ypy/(y — 1) + 1 + Bi.

Assuming as before that p; «< 1 and v = 5/3, we obtain a simple relation between the magnetic field behind
the wave and the Mach number (or the density):
B} = (2/3)(5M2 —M* — 4) = (2/3) (51, — n} — 4). (5.2)
In the absence of thermal conduction, as for the oblique waves, the transition from continuous to dis-
continuous solutions occurs at critical parameters which are determined from the equation

g = (5/4)p, — (3/2) = 0,

from which, using (5.1) and (5.2), we obtain the equation for the critical Mach number M,
5Mi — 10Mz — 4 =0,
Thus, for engaged shock waves with x = 0 the critical parameters are

M, = (1 + 37132 = 1.53, ny, =1+ 3/175~234 Bp=I[12015 —1)]V2 ~1.22, p;, = 1.2,

If thermal conduction is taken into account (x = 0), then the number of sign changes in the Routh sequence de-
pends on the sign of the coefficient f; = xy(p; — 2Muy,; )/M in the characteristic equation. The critical Mach
number is determined from the equation 1\/14,'< - ZMZ* —2 =0, and the critical parameters for engaged shock

waves with allowance for thermal conduction are

M, = (1 +V 32~ 1.65. ny, =14+V 32273, B, = 2(V3—-01"2x1.21, p,, = 2.

6. Numerical Solution of the Structure Equaticns

The main purpose of the calculations is to obtain the structure of the shock waves with parameters
close to the critical parameters. As the critical parameters are approached the profiles of the magnetic
field and the temperature have a rather large width, which is determined by the values of w and y, while the
width of the profiles of density and longitudinal velocity is sharply decreased. This circumstance leads to
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certain difficulties. Therefore, a method is proposed fcr the numerical solution of the structure equations
which can be usedin the entire region of variation of the parameters up to the critical values.

Taking 8 = 0 in Egs. (2.2), we obtain the following system of equations, which is then solved numerically:
dH/dx = E(H, B, u), dB/dz = F(H, B, u), du/dz = G(H, B, u), (6.1)

where
E = (1/e)[w(MH — nvsin 8) — (MB — nw sin 6 — Mn co0s0) sin 01;
F = (1/c6)[(MH — nv sin 8) sin 8 4 #(MB — nw sin 6 — Mn cos 0)[;
G = [Mx(p — 2Mw) {(uE/M)[(2 — »)H + B sin 81 + (uF/M){(2y, —
— #)B — Hsin 8] + (1/2)M(u? + * + w?) + ul(5/4)p + H* - B*] — (vH -+ wB) sin 8§ — C3}.

The neglect of the dispersion terms, which are connected with the inertia of the electrons and are proportional
to B, is possible in the case of 0 <9 5\&? only with large enough values of ¥ (high dissipation), while in the
case of 6 > w/E it is always possible.

In Egs. (6.1) let us change from the spatial argument x to the arc length s of the function u(x) in ac-
. o 2 . . s
cordance with the formulads=v1+ (du/dx)’ dx, Then in place of the system (6.1) we obtain the following system:

dH/ds = E(1 -+ G2, dB/ds = F{1 + G*—172, du/ds =G{{ + G*)—172,
dzlds = (1 + G*)—¥2,

The change to the argument s allows us to use any of the methods of solving ordinary differential equations
with a constant integration step.

As follows from the analysis of singular points (Sec. 4), the numerical solution of the structure equa-
tions must start from the vicinity of the singular point 1, taking as the initial conditions the solution of the
linear system (4.1) corresponding to the single negative root of the characteristic equation (4.3) at the point 1.

The results of the solution of the system of equations (6.2) are presented in Figs. 1-5. The dependence
of the width of the density profile Ay = (ny —1)/|dn/dx |y, 55 and of the magnetic field profile Ap = (By —
cos6)/|dB/dx |max on the Mach number for different angles ¢ is given in Figs. 1 and 2. The nature of the
variation in the width of the density profile is qualitatively the same — its sharp decrease occurs only in the
vicinity of the critical Mach number M*(G). The width Ap of the magnetic field profile approaches a certain
limit AE, which increases with an increase in » and 6, as M — M (). The dependence AR(6) for a fixed
value of % is presented in Fig. 3. Profiles of the density, magnetic field, and temperature in a shock wave
propagating at an angle 6 = 45° for different states of the plasma behind the wave are presented in Figs. 4
and 5. It is seen from these graphs that the steepness of the density profile increases as M — M,.

As shown by an analysis of the structure equations with M < M, , depending on the collision frequency
w the shock wave can have a monotonic structure (with w=n, ) or an oscillatory structure (with w< %*), where
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The nature of the singular point 0 changes when the discriminant of Eg. {(4.4) changes sign; the formula for
u, is obtained from this condition: Hence, it follows that the collision frequency », increases with an in-
crease in the Mach number M and in the angle 6.
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